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Abstract

We discuss several aspects of the geometry of nuclear collisions relevant to
STAR and RHIC, within the framework of the familiar Glauber formalism. An
analytical rule is derived for the scaling of hard process rates with system size in the
absence of nuclear effects, and baseline predictions are made for single inclusive
pion rates at highp?. The initial shape of the interaction region fornoncentral
collisions is discussed for several simple interaction models, and moments of these
distributions projected into the transverse plane are calculated. The number of
nucleon participants and binary collisions for these models is also calculated. The
radial distribution of hard scatterings relative to the center of the colliding nuclei
is presented.

1 Introduction

The distributions of many observables measured in high energy nuclear collisions are
dominated by simple effects of nuclear geometry. Familiar examples ared�=dE

?
and

d�=dM, whereE
?

is the transverse energy and M is the multiplicity measured in a
large rapidity interval. The search for new phenomena at RHIC will require the com-
parison of distributions of observables from colliding systems of varying initial size
and shape, achieved experimentally through variation of the mass of the beams and the
centrality of the collision1. New phenomena may be identifiable by deviations of dis-
tributions from conventional, hadronic scenarios, but they must be distinguished from
the simple geometric effects. Understanding the influence of nuclear geometry on each
observable is thus an important ingredient to understanding RHIC data.

At energies at which nuclear collisions have been studied until now (
p
sNN �

20 GeV), the distributions of coarse quantities such asE
?

or M in a large rapidity
interval scale with the estimated number of excited nucleons, the so-called Wounded

�Revisions are: correction to the exponent of A in eqn. (14) and following text, and correction of some
numerical errors in Tables 1 and 2.

1We will not discuss the important experimental questions associated with estimating “centrality” or
impact parameter of a collision.
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Nucleon scaling first observed in proton-nucleus collisions [1, 2]. A new ingredient
in this discussion emerges when considering nuclear collisions at RHIC energies and
beyond: at RHIC, hard processes contribute significantly (of order 50% [3]) toE

?
and

M. The number of hard scatterings in an event is expected to scale roughly with the
number of binary nucleon-nucleon collisions, not the number of excited nucleons, so
that the relationship between geometry of the collision andd�=dE

?
or d�=dM will be

different at RHIC than at lower energies.
In this note, we discuss several aspects of the geometry of nuclear collisions rel-

evant to STAR and RHIC. Nuclear geometry and its connection to experimental ob-
servables in high energy collisions has been discussed for many years, dating back at
least to Glauber [4]. It would be surprising if there is anything new to say about it,
and there is indeed nothing basically new in this note. We apply a simple, widely used
formalism [3, 5] and plot distributions that give some insight into geometrical effects in
nuclear collisions. These distributions are intrinsic to calculations utilizing this formal-
ism, but previous authors (that we have found) simply have not plotted them explicitly.
In addition, we derive a scaling rule for the dependence of the rate of hard processes
on system mass, and apply it to observables relevant to STAR Year 1.

We present the formalism in section 2. Section 3 discusses the scaling of the rate of
hard processes (small cross sections) with system mass, section 4 discusses the trans-
verse profile of the interaction volume for non-central collisions, section 5 presents the
number of nucleon participants and binary collisions per nuclear collision, and section
6 discusses the radial distribution of hard processes relative to the center of one of the
colliding nuclei.

2 Formalism

The coordinate system is defined in Figure 1. We utilize the standard nuclear thickness
functionTA [5],

TA(j~sj) =
Z

dz�A(z;~s): (1)

For the nuclear density we use a Woods-Saxon distribution,

�A(r) = �0 �
1

1 + e(r�RA)=a
; (2)

wherer =
p
s2 + z2, RA = 1:12 � A1=3, and�0 = 0:159 GeV/fm3 and a=0.535 fm

for 197Au. �A is normalized so that
R
d2sTA(j~sj) = A.

In Fig. 1, the nuclear impact parameter is denoted b, and the distance to a point in
the transverse plane from the center of either nucleus is denotedbA andbB. The vector
from the origin to this point is written

~s = ~bA �
b

2
x̂ = ~bB +

b

2
x̂: (3)

wherex̂ is the unit vector in thex direction.
We now consider some scaling rules of rates and cross sections relative to nucleon-

nucleon collisions for nuclear collisions at a given nuclear impact parameter:
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Figure 1: Transverse coordinate system. A and B are the masses of the colliding nuclei.
The incoming beams are (anti-)parallel to the z axis. The x-z plane is commonly called
the reaction plane.

� Wounded Nucleon Scaling: We consider the number of nucleons at~s that are
struck at least once by the nucleons in the oncoming nucleus, where “struck”
means inelastically excited with nucleon-nucleon collision cross section2 �NN.
In the transverse projection, the density of wounded nucleons per nuclear colli-
sion is given in units1=fm2 by:

d2NWN

ds2
= TA(bA)�(1�e�TB(bB)�NN)+TB(bB)�(1�e�TA(bA)�NN); (4)

where the dependence on nuclear impact parameter is via Eq. 3.

� Binary Collision Scaling: More generally, we mean those processes with suffi-
ciently small nucleon-nucleon cross section�hard

NN
thatTA � �hardNN

�1 (we apply
the label “hard” because we are usually refering to high momentum transfer
processes, or hard scattering). Nucleon-nucleon interaction probabilities can be
added for the total interaction probability, and the number of hard scatterings per
nuclear collision goes as the number of binary nucleon-nucleon collisions. The
density in the transverse projection of hard processes per nuclear collision, in
units1=fm2, is then

d2Nhard

ds2
= �hard

NN
�TA(bA) �TB(bB): (5)

Integrating over the transverse plane (and changing integration variables), the
total number of hard processes per nuclear collision is given as a function of

2
�NN� 30 mb at the SPS (

p
sNN=20 GeV) and 40 mb at RHIC (

p
sNN=200 GeV).
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nuclear impact parameter b by[3, 5]:

Nhard(b) = �hard
NN

�
Z

d2sTA(j~sj)TB(j~b� ~sj) � �hard
NN

�TAB(b) (6)

The geometric scaling rule for the mean number of hard processes per nuclear
collision, with no restriction on collision geometry, is

< Nhard > � �hard
AB

=�
geom

AB
(7)

= (�hard
NN

Z
d2bTAB(b))=�

geom

AB
(8)

= (AB � �hard
NN

)=�geom
AB

; (9)

where�geom
AB

is the geometric (inelastic) nucleus-nucleus cross section and�hard
AB

is the total cross section in nuclear collisions A+B for the hard process under
consideration. Thus, neglecting nuclear effects,

�hardAB = (AB) � �hard
NN

: (10)

More generally, nuclear effects will modify this to�hard
AB

= (AB)
� � �hard

NN
, with

� typically less than 1 [6].

3 Rates of Hard Processes

Following reference [5], the fraction of the total cross section for hard processes in
nuclear collsions A+B occuring at impact parametersb < bc is

fAB(bc) =
2�

AB

Z bc

0

bdbTAB(b): (11)

The fraction of the geometric cross section with impact parameterb < bc is

fgeo(bc) = [2�

Z bc

0

bdb(1� e�TAB�NN)]=�
geom

AB
: (12)

Analogous to equation 9, the number of hard processes per nuclear collision for colli-
sions with impact parameterb < bc is given by

Nhard(bc) �
�hard
AB

(b < bc)

�
geom

AB
(b < bc)

=
AB�hard

NN

�
geom

AB

fAB(bc)

fgeo(bc)
: (13)

Figure 2, taken from Ref. [5], showsfAB(bc) vs. fgeo(bc) for symmetric systems of
widely varying mass. The striking feature of Fig. 2 is thatfAA(bc)=fgeo(bc) is only
very weakly dependent upon A, except for the lightest systems. For instance, the most
central 10% of the geometric cross section contains 35% of the total hard cross section
for Si+Si, 40% for Ag+Ag, and 41% for Au+Au (more extensive tabulation is found in
Table 3 of Ref. [5]).
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Figure 2: Figure 4 of Ref. [5]:fAA(bc) (eqn. 11) vsfgeo(bc) (eqn. 12) for symmetric
systems A=197, 110, 63, 27 and 16.fAA(bc) rises most rapidly for the heaviest system.

A significant portion of STAR data will be triggered with a loose cut on centrality
(“minimum bias” data). The geometric scaling of hard process rates with system size
in this case will follow the appropriate curve in Figure 2.

To determine the A dependence of the number of hard processes per nuclear col-
lision for symmetric systems, we use the geometric cross section�

geom

AB
' �(2RA)

2

with RA = 1:2A1=3 fm, so that equation 13 becomes

Nhard(bc) ' 5:5 � 10�3A4=3 � �
hard

NN

mb
� fAA(bc)
fgeo(bc)

: (14)

Given the insensitivity offAA(bc)=fgeo(bc) to A shown in Figure 2, we have the A-
dependent geometric scaling rule for hard process rates in the absence of nuclear ef-
fects: for a fixed fraction of the geometric cross section, the number of hard processes
(e.g. jets orJ=	) per event grows with system size as A4=3. Deviations from this rule
indicate nuclear effects such as initial state scattering and shadowing, as well as jet
quenching andJ=	 suppression. Because the curves in Fig. 2 are approximately linear
at lowfgeo(bc), expression 14 is only weakly dependent uponbc for central collisions.
For instance, the mean number of hard processes per nuclear collision is about the
same for the 2% and 10% most central collisions (fraction of the total geometric cross
section).

Equation 14 can be used to predict the inclusive single particle charged pion and
�0 spectra from different systems, assuming no nuclear effects. We apply it here to
scale the existing UA1 data on highp

?
pions fromp�p collisions to predict inclusive

single particle rates in STAR, for systems under discussion for Year 1 running. The
UA1 cross section for single inclusive charged pions is taken from [7]:d�=dydp

?
=

10�3 mb/GeV atp
?

=5 GeV and5 � 10�5 mb/GeV atp
?

=8 GeV. We distinguish two
modes of online event selection by STAR:
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� Event selection by nuclear collision geometry: Events are selected online on
the basis of transverse energy or multiplicity over largeacceptance, not by the
presence of a highp

?
pion. Since highp

?
charged pions are measured by the

TPC, thed�=dydp
?

given above is scaled up by a factor 2 for two rapidity units
of acceptance and a factor 2 for two charge signs. A 50% duty factor is as-
sumed for data taking, giving an overall upward scaling factor of 2 for the rate.
Table 1 shows the number of STAR events required for 1000 detected charged
pions per GeV bin at 5 and 8 GeV, along with the number of days required for
this measurement, for central and minbias Au+Au and Si+Si, and minbias p+p.
“Central” is the most central 5% of the geometric cross section. Luminosity is
assumed to be high enough that the event rate is limited by the recording band-
width (20 MB/sec) and assumed event sizes (Au+Au central=20 MB, minbias=1
MB; Si+Si central=3 MB, minimum bias=0.15 MB). The p+p and minimum bias
Si+Si recording rates are assumed to be the maximum rate for “empty events”,
150 events/second (We are not making precise estimates, so we have not pursued
a better gauge of this number with the experts.)

� Highp
?
�0 trigger: Events are selected online by means of a highp

?
�0 trigger

in the Year 1 EMC acceptance (10% of azimuth, one unit of rapidity). Table
2 shows the event rate per GeV per day of�0s at 5 and 8 GeVp

?
for central

and minimum bias Au+Au and Si+Si, and minimum bias p+p, under the stated
assumptions for luminosity, and an assumed duty factor for data taking of 50%.
“Central” is the most central 5% of the geometric cross section. Event character-
ization of collision geometry is performed offline, based upon transverse energy
or multiplicity in a largeacceptance.

Tables 1 and 2 show that high statistics inclusive pion spectra can be measured by
STAR well into the perturbative region for a variety of systems in year 1, even if the
Si+Si and p+p running periods are restricted to 2-3 weekseach. Nuclear effects due to
shadowing are expected to alter these rates on the order of 10-20% [8].

4 Transverse Profile of the Interaction Volume for Non-
central Collisions

The azimuthal anisotropy of momentum distributions in nuclear collisions can be re-
lated to the orientation of the event plane (the x-z plane in Figure 1) for noncentral
collisions over a wide range of energies [9], and has been quantitatively studied up to
the highest energy nuclear collisions at the SPS [10]. The lowest order harmonics are
referred to as directed and elliptic flow, and are characterized by coefficientsv1 and
v2 respectively in a Fourier expansion of the azimuthal angle or momentum distribu-
tions [9].

The azimuthal resolution of the event plane orientation depends upon the magni-
tude of the flow and the multiplicity of the event. Peripheral collisions of a given
system have greater anisotropy but poorer statistical resolution than central events. For
a large acceptance experiment at the SPS or RHIC, the highest event plane resolution
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System # evt/day p
?

(GeV) # evt for 1000/GeV # days

Au+Au central (5%) 4 � 104 5 1 � 104 0.24
8 2 � 105 5

Au+Au minbias 8 � 105 5 4 � 104 0.05
8 8 � 105 1

Si+Si central (5%) 2:5 � 105 5 1:5 � 105 0.6
8 3 � 106 12

Si+Si minbias 5 � 106 5 5 � 105 0.1
8 1 � 107 2

p+p minbias 5 � 106 5 1 � 107 2
8 2 � 108 40

Table 1: Online selection of collision geometry: Event sets for highp
?

charged pions
measured in the TPC. Assumptions and details of calculation given in text. Column
4 gives the number of events of a given centrality selection required to obtain 1000
charged pions in a bin of width 1 GeV, centered at a givenp

?
.

is expected to be in the neighbourhood of<cos(	measured �	true)>� 0:4 [9]. With
the maturation of techniques to determine the event plane orientation at high energies
has come the suggestion to look at the angular dependence of other observables relative
to the event plane, such as HBT correlations, jets, andJ=	 production [9, 11].

Elliptic flow at midrapidity has received particular attention recently because of a
possible connection to the Equation of State (see discussion and references in [9]). To
help distinguish dynamics from purely geometrical effects, it has been suggested [12,
13] that the measuredv2, the elliptic anisotropy, be scaled by theeccentricity of the
reaction volume. This is defined to be [12, 13]

� � < y2 > � < x2 >

< y2 > + < x2 >
� b

2RA

(15)

where< : : : > indicates the spatial average over the transverse plane weighted by a
density such as that of wounded nucleons (equation 4). The approximation is the ratio
of axes of the overlap region in Figure 1,(y jx=0)=(x jy=0), not weighted by nuclear
density [13].

Given these considerations, we look in some detail at the transverse profile of the
reaction volume for noncentral collisions within the geometrical framework outlined
in Section 2. This must be done with some caveats in mind, however. We do not
incorporate any aspects of longitudinal or transverse dynamics of the nuclear collision,
and do not claim to model the collision. These calculations at best indicate the initial
geometry of the reaction. However, the formulation of initial conditions in dynamical
models such as HIJING and RQMD are similar to Section 2, and the distributions
presented here should correspond closely to distributions from those models. Finite
formation time of hadrons will smear out the spatial distributions of hard processes
presented here, making the observed distributionsmore isotropic, but we do not attempt
to account for this effect.
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System Luminosity ((mb � sec)�1) p
?

� (mb) #/GeV/day

Au+Au central 0.02 5 0.8 700
8 0.04 35

Au+Au minbias 0.02 5 4.0 3400
8 0.2 170

Si+Si central 4.0 5 0:014 2400
8 7 � 10�4 120

Si+Si minbias 4.0 5 0:078 1:4 � 104
8 4 � 10�3 680

p+p 100 5 1 � 10�4 430
8 5:5 � 10�6 22

Table 2: Online selection by highp
?
�0 trigger in EMC: events per GeV bin at a given

p
?

per day. Assumptions and details of calculation given in text.

We calculate the transverse density distribution of the reaction volume as a function
of impact parameter, utilizing four different weighting functions:

� Wounded Nucleons: The transverse density profile is calculated using a Woods-
Saxon density distribution and Eq. 4, appropriate for the bulk of particle produc-
tion. We use�NN=30 mb, but also investigate the sensitivity of the computed
quantities to this parameter.

� Binary Collisions: The transverse density profile is calculated using a Woods-
Saxon density distribution and Eq. 5, appropriate for hard processes such as jet
andJ=	 production.

� Hard Sphere: The transverse density profile is calculated for colliding sharp-
edged spheres, with the density defined asTA+TB. This corresponds to the limit
of the Wounded Nucleon density in which the Woods-Saxon parametera in Eq. 2
is small and�NN in Eq. 4 is large. The radius of the hard sphere corresponding
to a Au nucleus is 7.24 fm, increased from the Woods-Saxon value of 6.52 fm in
order to obtain the same total cross section.

� Two Dimensional: The transverse density profile is simply the area of overlap
region in Fig. 1, with uniform weighting (i.e. without taking intoaccount the
nuclear thickness in the z-direction). The radius corresponding to a Au nucleus
is 7.24 fm, as in the Hard Sphere calculation.

We first present the transverse density profiles graphically, and then calculate mo-
ments to compare the distributions quantitatively. Figures 3 to 6 show the transverse
density profiles for Au+Au collisions as linear contour plots in one quandrant of the
coordinate system defined in Fig. 1, for the four weighting functions at different impact
parameters. The Wounded Nucleon and Binary Collision profiles are very similar in
shape, with the Binary Collision distribution falling off slightly faster from the origin.
Neither could properly be labelled “almond-shaped”, a common characterization of the

8



x (fm)
0 1 2 3 4 5 6 7 8

y 
(f

m
)

0

1

2

3

4

5

6

7

8

x (fm)
0 1 2 3 4 5 6 7 8

y 
(f

m
)

0

1

2

3

4

5

6

7

8

x (fm)
0 1 2 3 4 5 6 7 8

y 
(f

m
)

0

1

2

3

4

5

6

7

8

x (fm)
0 1 2 3 4 5 6 7 8

y 
(f

m
)

0

1

2

3

4

5

6

7

8

Figure 3: Transverse density of Wounded Nucleons as a function of (x,y) (see Fig 1),
for collisions of Au+Au at impact parameters b=0, 4, 8 and 12 fm.
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Figure 4: Transverse density of Binary Collisions as a function of (x,y) (see Fig 1), for
collisions of Au+Au at impact parameters b=0, 4, 8 and 12 fm.
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Figure 5: Transverse density profile of interacting hard spheres as a function of (x,y)
(see Fig 1), corresponding to Au+Au at impact parameters b=0, 4, 8 and 12 fm.
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Figure 6: Two dimensional transverse density profile as a function of (x,y) (see Fig 1)
corresponding to the region of overlap in Fig 1, for Au+Au collisions at impact param-
eters b=0, 4, 8 and 12 fm.
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Figure 7: Mean and dispersion of radius of the interaction region as a function of
impact parameter for Au+Au collisions, for the four weighting functions. The units of
both axes are fm.

shape of the reaction volume for non-central collisions. The less realistic Hard Sphere
and Two Dimensional calculations exhibit larger aspect ratios for noncentral collisions
and unphysical sharp declines in the density at the boundaries of the overlap region,
and can reasonably be labelled “almond” or“canoe-shaped”.

Figure 7 shows the mean transverse radius (< s> in Fig. 1) and its dispersion
(
p
< s2> �< s>2) for the four weighting functions, as a function of impact parameter

for Au+Au collisions. As is seen in the density profiles themselves, the Two Dimen-
sional and Hard Sphere functions give larger mean radii than the Wounded Nucleon
and Binary Collision functions. The dispersion in the radius is similar for all four func-
tions, and is a weak function of impact parameter. The values at large impact parameter
are dominated by the treatment of the nuclear surface.

Note that in the case of Binary Collision weighting, the mean (and median) radius
is about 3.5 fm for the most central collisions. In other words, about one half of all
producedJ=	 or jets are generated farther than 3.5 fm. in the transverse plane from
the center of the reaction zone in central collisions, with a distribution in radius which
has a half-width of about 1.5 fm. Rather few of theJ=	 or jets are produced near the
center of the reaction, due simply to the geometry of nucleus-nucleus collisions.

Figure 8 shows the eccentricity (Eq. 15) of the interaction region as a function of
impact parameter for Au+Au collisions, for the four weighting functions. Also shown
is the approximation b/(2RA) from Eq. 15. The eccentricity of the Wounded Nucleon
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Figure 8: Eccentricity (Eq. 15) of the interaction region as a function of impact param-
eter for Au+Au collisions, for the four weighting functions.

and Binary Collision models are similar and significantly smaller than those of the
other models. Parametrization of� in the Wounded Nucleon Model and its dependence
upon�NN is discussed in Appendix A.

To summarize the main results of this section:

� Within a baseline physics picture, in which the collision of heavy nuclei is sim-
ply the convolution of elementary hadronic collisions, the spatial distribution of
wounded nucleons and binary collisions for small cross sections is very similar
at all nuclear impact parameters.

� For central collisions of heavy nuclei, the bulk of hard scattering lies in an annu-
lus in the transverse plane of radius� 3:5� 1:5 fm.

5 Number of Participants and Binary Collisions

The distributions in Figures 3 to 5 can be integrated to calculate the total number of
nucleon participants or binary collisions per nuclear collision as a function of nuclear
impact parameter. These are presented in Tables 3 and 4 for Au+Au and Pb+Pb col-
lisions. Columns 2 and 3 give the number of Wounded Nucleons (Equation 4) with
�NN=30 and 40 mb. Column 4 gives the fraction of volume of the Hard Spheres that
interact, normalized to the total number of incoming nucleons. Column 5 gives the
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number of binary collisions for an interaction cross section of 1�barn (the rate for
other small cross sections is obtained by linear scaling of this number).

b (fm) # part # part # part (HS) # BC (�barn�1)
(WN, �NN=30 mb) (WN, �NN=40 mb)

0.5 368 376 389 2:8 � 10�2
1.5 355 364 366 2:7 � 10�2
2.5 331 341 335 2:5 � 10�2
3.5 298 310 302 2:2 � 10�2
4.5 262 274 263 1:8 � 10�2
5.5 223 234 226 1:5 � 10�2
6.5 183 193 187 1:2 � 10�2
7.5 144 155 148 8:5 � 10�3
8.5 108 117 115 5:8 � 10�3
9.5 77 84 82 3:7 � 10�3
10.5 49 55 54 2:1 � 10�3
11.5 28 32 32 1:0 � 10�3
12.5 13 16 15 4:0 � 10�4
13.5 5 6 4 1:3 � 10�4

Table 3: Impact parameter dependence for Au+Au collisions of the number per nuclear
collision of nucleon participants in the Wounded Nucleon model (columns 2 and 3) and
colliding Hard Spheres (column 4), and the number of binary scatterings with cross
section 1�barn (column 5).

Tables 3 and 4 show only a weak dependence of the number of participants on
�NN, and good agreement between the number of participants calculated with the Hard
Sphere and Wounded Nucleon models. The latter point is in sharp contrast to the
strong difference seen between the models for� (Figure 8), and is due to the fact that
the number of participants is dominated by the bulk volume, whereas� is dominated
by the surface overlap.

6 Radial Distribution of Hard Processes

We conclude with a discussion of the transverse density distribution of hard processes
(binary collisions) with respect to the center of one of the nuclei. Refering to Fig. 1, we
examine the density of binary collisions as a function ofbA rather than as a function
of ~s as was done in the previous sections. The distribution of hard scattering inbA
is relevant to the study initial state effects, such as the Cronin effect and the spatial
variation of nuclear structure functions [8].

Figure 9 shows the normalized probability distribution for hard processes as a func-
tion of bA for Au+Au collisions within restricted ranges of impact parameter, and for

15



b (fm) # part # part # part (HS) # BC (�barn�1)
(WN, �NN=30 mb) (WN, �NN=40 mb)

0.5 388 397 410 3:0 � 10�2
1.5 375 385 388 2:9 � 10�2
2.5 351 362 358 2:6 � 10�2
3.5 318 330 322 2:3 � 10�2
4.5 281 293 286 2:0 � 10�2
5.5 241 252 246 1:6 � 10�2
6.5 199 211 206 1:3 � 10�2
7.5 159 170 169 9:5 � 10�3
8.5 121 131 132 6:7 � 10�3
9.5 87 95 99 4:3 � 10�3
10.5 58 64 69 2:5 � 10�3
11.5 34 39 44 1:3 � 10�3
12.5 17 20 23 5:5 � 10�4
13.5 7 9 8 1:9 � 10�4

Table 4: Impact parameter dependence for Pb+Pb collisions of the number per nuclear
collision of nucleon participants in the Wounded Nucleon model (columns 2 and 3)
and colliding Hard Spheres (column 4), and the number of binary scatterings with
cross section 1�barn (column 5).

p+Au collisions triggered on a hard process with no additional event charaterization3.
As in the previous sections, we see that the bulk of the production occurs well away
from the center of the nucleus for all impact parameters. The distributions for impact
parameters in the range0 < b < 6 fm are very similar. As the impact parameter
increases, the distribution becomes confined to the nuclear surface.

For the p+Au case, the distribution is plotted relative to the origin of the Au nucleus.
The distribution for inelastic p+Au collisions increases linearly from the origin to about
7.5 fm (not shown for clarity). Since all distributions are normalized, the inelastic
distribution would lie below the hard scattering one in this region, so that triggering
on a hard process in p+Au collisions biases the event selection towards more central
events.

It is interesting to note that the p+Au and central Au+Au distributions in Fig. 9
are quite similar. This may aid in connecting the initial state effects observed in p+Au
collisions to their contributions in central collisions of heavy nuclei.

3Characterizing the centrality of a very light nucleus colliding with a heavy one may be achievable at
RHIC by measuring the total multiplicity forp? < 1 GeV in a wide rapidity range. This technique appears
not to have sufficient resolution for p+Au collisions, but may do so for Li+Au.
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Figure 9: Normalized probability distribution of hard processes as a function of the
distance to the center of one of the colliding nuclei (bA in Fig. 1), for Au+Au collisions
within a range of impact parameters and for p+Au collisions tiggered solely on a hard
process.
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A � and S in the Wounded Nucleon Model

In this appendix we give a more detailed discussion of the characterization of the geom-
etry of the interaction region in the Wounded Nucleon Model. The elliptic anisotropy
of the overlap region�, defined in Eq. 15, is shown as a function of impact parameter
in Fig. 8 for all four models for Au+Au collisions.� is parametrized for the Wounded
Nucleon Model (�NN=30 mb) as

�(b) = �0:0469x+ 2:754x2� 4:797x3+ 4:852x4� 2:492x5 (16)

wherex = b=(2R) and2R = 15 fm. for Pb+Pb collisions and2R = 14:7 fm. for
Au+Au collisions.

Increase of�NN to 40 mb decreases� by 13% at b=2.5 fm and 4% at b=10.5 fm,
with the change monotonic in b. The decrease of� with increasing�NN can be un-
derstood by noting that the value of� is dominated by surface effects. Increasing�NN
effectively extends the surface to larger radii, with the consequence that the shape of
the interaction region in the transverse projection is less eccentric than for�NN=30 mb
at the same impact parameter.
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For reference, we also include a parametrization in the same model of the impact
parameter dependence of the quantityS = �RxRy [13]. Here,Rx =

p
<x2>, Ry =p

<y2>, and< : : : > denotes the spatial average used in Equation 15. In [13],S is
used to calculate the particle density in the overlap region. The parametrization is

S(b)=(�R2) = 0:164 + 0:0141x� 0:684x2 + 1:026x3� 0:763x4+ 0:284x5 (17)

where, again,x = b=(2R) and2R = 15 fm. for Pb+Pb collisions and2R = 14:7 fm.
for Au+Au collisions.
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